Abstract

Highly conductive SiC-Ti2CN composites were fabricated from β-SiC and TiN powders with 10 vol% Y2O3-AlN additives via pressureless sintering. The effect of initial TiN content on the microstructure, and electrical and mechanical properties of the SiC-Ti2CN composites was investigated. It was found that all specimens could be sintered to ≥98% of the theoretical density. The electrical resistivity of the SiC-Ti2CN composites decreased with increasing initial TiN content. The SiC-Ti2CN composites prepared from 25 vol% TiN showed the highest electrical conductivity (∼1163 (Ω cm)−1) for any pressureless sintered SiC ceramics thus far. The high electrical conductivity of the composites was attributed to the in situ-synthesis of an electrically conductive Ti2CN phase and the growth of N-doped SiC grains during pressureless sintering. The flexural strength, fracture toughness, and Vickers hardness of the composite fabricated with 25 vol% TiN were 430 MPa, 4.9 MPa m1/2, and 23.1 GPa, respectively, at room temperature.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.