Abstract

In this work, the authors use computer modeling to theoretically investigate the mechanisms involved in figure-of-eight reentry during acute regional myocardial ischemia, a pattern of excitation which may lead to ventricular fibrillation and sudden cardiac death. For this purpose, a modified version of the Luo–Rudy dynamic model for the action potential and ionic currents has been used, together with a two-dimensional model of the regionally ischemic ventricle. The virtual tissue comprises several realistically dimensioned and located transitional border zones for hyperkalemia, hypoxia and acidosis, simulating the substrate heterogeneity created by acute ischemia. Different types of patterns of excitation following the delivery of a premature stimulus were obtained, including figure-of-eight reentry. Action potentials and selected ionic currents which explain the reentry process are analyzed. The effect of the degree of ATP-sensitive current activation in the vulnerability to reentry is also studied. The results are in accordance with experimental observations, and demonstrate the ability of second-generation mathematical models to analyze and explain the mechanisms involved in ischemic reentry.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.