Abstract

Electric tweezers are a touchless positioning apparatus that employs dielectrophoresis and electroorientation to arbitrarily position cell-sized particles. In this paper, we develop an algorithm which enables electric tweezers to operate on multiple particles. Furthermore, we probe the limits of this technique in simulation, examining the range of electric field magnitudes and forces that can be applied. We then demonstrate this new functionality on two particles. The device can apply forces on any particle of non-zero polarizability and here this is highlighted by manipulating negatively polarized glass beads. Additionally, we demonstrate that negligibly polarized particles can also be manipulated through mechanical forces applied by other particles.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.