Abstract

A new system for converting combustion heat into electric power was proposed on the basis of reciprocating-flow super-adiabatic combustion in a catalytic and thermoelectric porous element. Self-sustaining combustion of an extremely low-calorific gas was successfully achieved in the element; because a reciprocating flow in the porous element recirculated energy, effectively regenerating combustion gas enthalpy into an enthalpy increase in the low-calorific gas. In the combustion system, a trapezoidal temperature distribution was established along the flow direction, resulting in a steep temperature gradient in the thermoelectric porous element. Numerical simulation showed that 94% of the combustion heat was transferred through the thermoelectric element by conduction. As a result, the total thermal efficiency, which was defined as the ratio of the electric power generated to the combustion heat, attained a value close to the conversion efficiency of the thermoelectric device itself.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.