Abstract
ABSTRACTThe electrical properties of epoxy polymer/carbon nanotubes composites were characterized using impedance spectroscopy in the frequency range between 1 Hz and 10 MHz and temperature range between 25°C and 105°C. We report the analysis of the experimental data using the electric modulus formalisms to understand the dielectric relaxation mechanisms. The variation of the real and imaginary parts of the electric modulus versus frequency and temperature were suggestive of two relaxation processes, associated with dipolar relaxation and CNT-polymer interfaces. The Havriliak-Negami model of dielectric relaxation was used for modelling the relaxation processes, extracting the relaxation parameters.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.