Abstract

An hypothesis regarding the impact of water density near hydrophobic surfaces on the electrostatic component of their interaction was offered. A theoretical model of the electric double layer and the interparticle interaction under conditions of the variable density and, consequently, variable dielectric permittivity of water has been developed. It was shown that reduction of the dielectric permittivity near interfaces determined by their hydrophobicity resulted in compression of double electrical layers and weakening of their overlapping. This, in its turn, results in reduction of the electrostatic repulsion of hydrophobic disperse particles as compared with nonhydrophobic ones.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.