Abstract
We have numerically investigated the transmission and plasmon resonance properties of the metal strip tetramer. The results show that in the symmetric model there are three sharp transparent windows, the first and third peaks’ transmittance are more than 75%. When decreasing metal strips size or increasing gap distance, the transmission spectra blue-shift and intensities change. While introducing asymmetry, the transmission spectra and Plasmon resonance significantly change, whether to modify the size or the gap distance, a new dip exist on the second peak, and one or two new peaks exist on the third dip. Through analysis of the electric-magnetic properties, we find that the new dip results from asymmetric second-order magnetic resonance, while the peak is originated from the strong electric resonance. It is also demonstrated that the sensor sensitivity in this proposed system can reach of 380nm/RIU. The resonator design strategy opens up a rich pathway for the implementation of optimized optical properties for specific applications.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Physica E: Low-dimensional Systems and Nanostructures
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.