Abstract

Very little is known about the elasticity of the human ventricular fold (false vocal fold). To better understand the potential role of the false fold in the fluid dynamics and aeroacoustics of phonation, we made some measurements on the elastic properties of human ventricular fold tissues in vitro. Uniaxial tensile stress-strain characteristics of 6 male and 6 female false fold specimens were quantified with sinusoidal stretch-release deformation. Midcoronal sections of 3 specimens were examined to quantify the relative densities of collagen, elastin, seromucous glandular tissue, and adipose tissue by digital image analysis. Nonlinear stress-strain curves with hysteresis (viscous energy loss) were observed, with large interindividual differences. A hybrid linear-exponential model was used to determine the elastic modulus (tangent Young's modulus) of the false fold. On average, the male false fold was twice as stiff as the female at a tensile strain of 20% to 30%. This preliminary gender-related difference in elasticity could be attributed to a higher proportion of glandular tissue in the female false fold, due to the lower elastic modulus of glands. The present data allow one to develop a more comprehensive biomechanical model of phonation, for optimizing postoperative voice production following laryngeal reconstruction procedures.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.