Abstract

Elasticity, hardness, and thermal conductivity of ZrBn (n=1, 2, 12) were studied in this paper by using the first-principles calculations of plane wave ultra-soft pseudo-potential technology based on the density functional theory (DFT). Deep analysis of elasticity and anisotropy was carried out, indicating that ZrB and ZrB2 are soft (the most anisotropic) and superhard (the least anisotropic) respectively. The transverse wave speed (Vt), longitudinal wave speed (Vl) and the minimum thermal conductivity κmin (both Clark and Cahill model) were calculated. Our investigations show that ZrB is a good heat insulating material and a good lubricant, ZrB12 can be served as a good high-temperature-resistant material and superconducting material, and ZrB2 is a good wear-resistant material.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.