Abstract

The growth or absence of elastic secondary flows is documented for flows of dilute and semi-dilute polymer solutions in sharp 90° micro-bends in channels of rectangular cross-section; secondary flows are not present for Newtonian flows under similar conditions. Flow visualization shows that a vortex is present in the inner, upstream corner of the bend and grows with increasing Reynolds (Re) and Weissenberg (Wi) numbers for flows of shear-thinning, semi-dilute polymeric solutions containing λ-DNA (9.9×10−7<Re<3.1×10−2, 0.42<Wi<126) or high molecular weight poly(ethylene) oxide (PEO) (3.5×10−4<Re<4.7×10−3, 1.8<Wi<17.7). Rheological differences, likely due to differences in the flexibility of DNA and PEO, influence the degree of vortex enhancement with increasing Wi. The vortex is absent for flow of a dilute, non-shear-thinning PEO solution over a large Re and Wi range (3.3×10−4<Re<1.6×10−2, 1.1<Wi<52.8) that includes conditions where vortices are observed for the semi-dilute, shear-thinning solutions. Hence...

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.