Abstract

This paper aims at a comprehensive understanding of the novel elastic property of double-stranded DNA (dsDNA) discovered very recently through single-molecule manipulation techniques. A general elastic model for double-stranded biopolymers is proposed, and a structural parameter called the folding angle straight phi is introduced to characterize their deformations. The mechanical property of long dsDNA molecules is then studied based on this model, where the base-stacking interactions between DNA adjacent nucleotide base pairs, the steric effects of base pairs, and the electrostatic interactions along DNA backbones are taken into account. Quantitative results are obtained by using a path integral method, and excellent agreement between theory and the observations reported by five major experimental groups are attained. The strong intensity of the base stacking interactions ensures the structural stability of DNA, while the short-ranged nature of such interactions makes externally stimulated large structural fluctuations possible. The entropic elasticity, highly extensibility, and supercoiling property of DNA are all closely related to this account. The present work also suggests the possibility that negative torque can induce structural transitions in highly extended DNA from the right-handed B form to left-handed configurations similar to the Z-form configuration. Some formulas concerned with the application of path integral methods to polymeric systems are listed in the Appendixes.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.