Abstract

An experimental method is presented for the complete solution of the elastic-plastic plane stress problem of an edge-cracked plate obeying the Mises yield criterion and the Prandtl-Reuss incremental stress-strain flow rule. The material of the plate is assumed as a strain-hardened one with different degrees of hardening. The elastic and plastic components of strain were determined by using the method of birefringent coatings cemented on the surface of the metallic specimens made of the material under study. Normal incidence of circularly polarized light yielded the isolinics and isochromatics of the coating which provided the principal elastic strain differences and strain-directions at the interface. Evaluation of the stress intensity factor at the crack tip, by using the Griffith-Irwin definition, gave the sum of principal stresses at the crack tip. These data were sufficient to separate the components of strain at the coating-plate interface by using the classical shear-difference method.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.