Abstract

Elastic low energy electron diffraction (LEED) intensity-energy ( I-E) measurements for clean (001), (110), and (111) nickel surfaces were obtained at room temperature. Surface composition was monitored by Auger spectroscopy. I-E data from 15 to 220 eV were obtained at normal incidence for the non specular beams and for the specular beams at incidence angles from 4° to 20° on the 0° and 45° azimuths of (001), on the 0° and 90° azimuths of (110), and on the 0° azimuth of (111) nickel. Normalization of the data was performed electronically during data acquisition. Intensities were calibrated with the use of a shielded, biased Faraday collector. The effects of instrumental and experimental uncertainties were examined and minimized to obtain intensities accurate to ± 15 %, energy scales accurate to ± 0.35 eV, and incident and azimuthal angles accurate to ± 0.25° and ± 1.0° respectively. All nickel surfaces have I-E spectra which are characteristic of strong multiple scattering. Angular evolution features for (001) and (110) spectra may be correlated with intraplanar resonances associated with the onset of propagating beams. Only the (001) surfaces were found to have pronounced, sharp resonance features associated with surface barrier resonances and inelastic loss processes. Kinematic analysis of the Lorenzian-shaped I-E peaks on all surfaces in consistent with surface expansion using either an energy-dependent or a constant inner potential of 10.75 ± 0.5 eV. The widths of these same peaks on all surfaces were found to vary as E 1 2 above 40 eV and E 1 3 below.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.