Abstract

We report on the results of molecular-dynamic simulations of vacancy and vacancy-step interactions on a (111) Au surface. Near the vacancy the strain field decays as ${\mathit{r}}^{\mathrm{\ensuremath{-}}\mathit{n}}$ with n\ensuremath{\sim}2 and the dilatational strain undergoes a rapid oscillatory decay to zero at a distance of 1 nm from the vacancy. This result suggests that there is no direct long-range elastic interaction between vacancies on this surface. The elastic interaction between a vacancy and a step only becomes significant at separations of less than \ensuremath{\sim}1 nm and is controlled by a mixing of the oscillatory pressure field of the step with the dilatational field of the vacancy. Our calculations indicate that a vacancy on the upper portion of a terrace associated with a step has to overcome an energy barrier of \ensuremath{\sim}0.1 eV in order for vacancy annihilation to occur at the step edge.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.