Abstract

Grain boundaries in a polycrystal imply elastic incompatibilities that can lead to stress states in the vicinity of the interface that are different from the macroscopic or applied stresses because the single crystal elastic properties are not all isotropic. This phenomenon is important as mechanical processes may operate at the microscopic level that would not be predicted based on the macroscopic stress state. This phenomenon has not been widely examined. One of the few studies that examined the level of stress- state modification on copper determined that slip or plasticity in cyclically deformed copper occurred in areas with high elastic incompatibility stresses. The focus of the present study is the unstable growth of cavities as a result of high local triaxial stress. Grain boundaries in silver, aluminum, and zirconium are examined.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.