Abstract
The dietary intake of elaidate (elaidic acid), a trans-fatty acid, is associated with the development of various diseases. Since elaidate is a C18 unsaturated fatty acid with a steric structure similar to that of a C18 saturated fatty acid (stearate), we previously revealed that insulin-dependent glucose uptake was impaired in adipocytes exposed to elaidate prior to and during differentiation similar to stearate. However, it is still unknown whether the mechanism of impairment of insulin-dependent glucose uptake due to elaidate is similar to that of stearate. Here, we indicate that persistent exposure to elaidate has particular effects on insulin signaling and GLUT4 dynamics. Insulin-induced accumulation of Akt at the plasma membrane (PM) and elevations of phosphorylated Akt and AS160 levels in whole cells were suppressed in adipocytes persistently exposed to 50 μM elaidate. Interestingly, persistent exposure to the same concentration of stearate has no effect on the phosphorylated Akt and AS160 levels. When cells were exposed to these fatty acids, elaidate suppressed insulin-induced fusion, but not translocation, of GLUT4 storage vesicles in the PM, whereas stearate did not suppress the fusion and translocation of GLUT4 storage, indicating that elaidate has suppressive effects on the accumulation of Akt and fusion of GLUT4 storage vesicles and that both elaidate and stearate vary in the mechanisms by which they impair insulin-dependent glucose uptake.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.