Abstract

An eighth-order virial equation of state (VEOS) for krypton, valid for temperatures up to 5000 K, was developed using the accurate potential functions proposed by Jäger et al. [J. Chem. Phys. 144, 114304 (2016)] for the pair interactions and nonadditive three-body interactions between krypton atoms. While the second and third virial coefficients were already calculated by Jäger et al., the fourth- to eighth-order coefficients were determined in the present work. A simple analytical function was fitted individually to the calculated values of each virial coefficient to obtain the VEOS in an easy-to-use analytical form. To enable a stringent test of the quality of the new VEOS, we measured the speed of sound in krypton in the temperature range from 200 K to 420 K and at pressures up to 100 MPa with a very low uncertainty (at the 0.95 confidence level) of 0.005%-0.018% employing the pulse-echo technique. In order to verify that the isotopic composition of the krypton sample conforms to that of natural krypton in air, high-precision measurements of krypton isotope ratios using a high-sensitivity noble gas mass spectrometer were performed. The extensive comparison with the new speed-of-sound data as well as with experimental p-ρ-T and speed-of-sound data from the literature indicates that pressures and speeds of sound calculated using our new VEOS have uncertainties (at the 0.95 confidence level) of less than 0.1% at state points at which the VEOS is sufficiently converged.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.