Abstract
We study a type of ‘eigenvalue’ problem for systems of linear ordinary differential equations with asymptotically constant coefficients by using the analytic functionD(λ) introduced by J. W. Evans (1975) in his study of the stability of nerve impulses. We develop a general theory ofD(λ) that clarifies the role of the essential spectrum in applications. New formulae for derivatives ofD(λ) are used to study linear exponential instabilities of solitary waves for generalizations of: (1) the Korteweg-de Vries equation (KdV); (2) the Benjamin-Bona-Mahoney equation (BBM); and (3) the regularized Boussinesq equation. A pair of real eigenvalues exists, indicating a non-oscillatory instability, when the ‘momentum’ of the wave (a time-invariant functional associated with the hamiltonian structure of the equation) is a decreasing function of wave speed. Also we explain the mechanism of the transition to instability. Unexpectedly, these transitions are unlike typical transitions to instability in finite-dimensional hamiltonian systems. Instead they can be understood in terms of the motion of poles of the resolvent formula extended to a multi-sheeted Riemann surface. Finally, for a generalization of the KdV-Burgers equation (a model for bores), we show that a conjectured transition to instability doesnotinvolve real eigenvalues emerging from the origin, suggesting an oscillatory type of instability.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Philosophical Transactions of the Royal Society of London. Series A: Physical and Engineering Sciences
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.