Abstract

We study the average and the standard deviation of the entanglement entropy of highly excited eigenstates of the integrable interacting spin-1/2XYZ chain away from and at special lines with U(1) symmetry and supersymmetry. We universally find that the average eigenstate entanglement entropy exhibits a volume-law coefficient that is smaller than that of quantum-chaotic interacting models. At the supersymmetric point, we resolve the effect that degeneracies have on the computed averages. We further find that the normalized standard deviation of the eigenstate entanglement entropy decays polynomially with increasing system size, which we contrast with the exponential decay in quantum-chaotic interacting models. Our results provide state-of-the art numerical evidence that integrability in spin-1/2 chains reduces the average and increases the standard deviation of the entanglement entropy of highly excited energy eigenstates when compared with those in quantum-chaotic interacting models.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.