Abstract

In this paper, the eigenfunction expansion variational method (Abbreviated as EEVM) is developed to solve the T-stress problem of the circular cracked plate. In the traction boundary value problem, EEVM is equivalent to the theorem of least potential energy in elasticity. Therefore, EEVM possesses a clear physical meaning. EEVM does not need any boundary collocation scheme. For the circular cracked plate, the following boundary value problems are solved: (a) with a uniform normal loading on the boundary, (b) with a partial loading on the boundary, (c) under mixed boundary condition. For the circular cracked plate with applied concentrated forces, after using the superposition principle and EEVM, the boundary value problem is solved. In the numerical examples, many computed results for stress intensity factor (SIF) and T-stress are presented. Some of computed results for T-stress are first presented in this paper.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.