Abstract

The immediate early gene Egr-1 is thought to form part of the pathway that mediates abnormal ocular growth. This study investigated whether the mRNA expression levels of Egr-1 in a mammalian retina are modulated differentially, depending on the direction of ocular growth. To induce accelerated growth and myopia, guinea pigs wore a -5 diopter (D) lens over one eye from 4 to 11 days of age. To induce inhibited growth, the lens was removed after 7 days of -5 D lens wear, and the eye allowed to recover from myopia for 3 days. Ocular parameters and Egr-1 mRNA levels were subsequently assessed, and compared to untreated fellow eyes and eyes from untreated littermates. Possible circadian changes in Egr-1 mRNA levels were also determined in 18 additional animals by taking measures every 4 hours during a 24-hour cycle. Ocular compensation to a -5 D lens occurred after 7 days (Δ -4.8 D, Δ +147 μm growth, N = 20). In 5 highly myopic eyes (Δ -7.4 D), Egr-1 mRNA levels in the retina were significantly downregulated relative to contralateral control (51%) and age-matched untreated (47%) eyes. Three days after the -5 D lens was removed, eyes had recovered from the myopia (Δ -0.5 D, relative change of +2.9 D, N = 4) and Egr-1 mRNA levels were significantly elevated relative to contralateral (212%) and untreated (234%) eyes, respectively. Normal Egr-1 mRNA expression was higher in the middle of the day than in the middle of the night. Immunolabeling showed strong Egr-1 reactivity in cell bodies in the inner nuclear and ganglion cell layers. Egr-1 mRNA levels in a mammalian retina show a bi-directional persistent response to opposing ocular growth stimuli. This suggests retinal Egr-1 might act as a signal for the direction of ocular growth in different species.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.