Abstract

This study focusses on the effect of chitosan coating with eggshell membranes for the reduction of different organic pollutants. Chickens eggs were collected from the local market and utilized to extract the enrich eggshell membranes (ESM). The chicken eggshell membranes are abundant waste material which is inexpensive and illustrates remarkable physiognomies for many possible applications. Fresh fibers/strips coated by chitosan (CS) were prepared by mixing the eggshell membranes with CS solution (2 wt%/v) in different proportions i.e., 10 %, 30 %, 50 %, 60 %, 70 %, 80 %, and 90 %. These strips were then templated with copper and iron metal nanoparticles by putting them in their metal ions aqueous solution to adsorb the metals ions and were then reduced to zero-valent metal nanoparticles (MNPS) by using NaBH4 aqueous solution. These prepared materials (MNPS@ESM-CS) were characterized by using XRD, XPS, FE-SEM, and EDS to confirm the successful preparation of MNPs over the surface of ESM coated with CS. Afterwards, these prepared materials were investigated as a catalyst for the reduction of different organic pollutants, such as 4-nitroaniline (4-NA), 4-nitrophenol (4-NP) and methylene blue (MB) dye. The catalytic efficiency of ESM was enhanced 5.7-fold by adding only 20 % CS solution. It was observed that Cu@ESM-CS-80 % took 7 min for reduction of 4-NA, 6 min for 4-NP, and 7 min for MB dye. The reusability of the catalytic strip was also investigated for four cycles and found efficient and can be easily recovered by simply pulling it from the reaction mixture.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.