Abstract

Simple SummaryExtinct giant birds have been a source of imagination, and knowledge of their incubation mechanics is crucial to our understanding of the evolution of avian reproduction. Despite the extensive studies on avian eggs, our understanding of the eggshell mechanics of giant birds, particularly the extinct ones, remains incomplete—most of these prior works were based on empirical or allometric relationships with limited quantitative analysis. In the present study, with the help of advanced three-dimensional computer simulation using data from published fossil records, we obtain more comprehensive quantitative analysis to answer important questions related to contact incubation of giant birds. Specifically, how much safety margin does the reversed sexual size dimorphism (RSSD) of moas provide? What is the theoretical upper limit of body mass for contact incubation? Is the Williams’ egg, or the putative Genyornis oological material (PGOM), really the egg of the extinct giant bird Genyornis newtoni, as commonly accepted since its discovery in 1981?Finite element analysis (FEA) was used to conduct mechanical analyses on eggshells of giant birds, and relate this to the evolution and reproductive behavior of avian species. We aim to (1) investigate mechanical characteristics of eggshell structures of various ratite species, enabling comparisons between species with or without reversed sexual size dimorphism (RSSD); (2) quantify the safety margin provided by RSSD; (3) determine whether the Williams’ egg can have been incubated by an extinct giant bird Genyornis newtoni; (4) determine the theoretical maximum body mass for contact incubation. We use a dimensionless number C to quantify relative shell stiffness with respect to the egg size, allowing for comparison across wide body masses. We find that RSSD in moas significantly increases the safety margin of contact incubation by the lighter males. However, their safety margins are still smaller than those of the moa species without RSSD. Two different strategies were adopted by giant birds—one is RSSD and thinner shells, represented by some moa species; the other is no RSSD and regular shells, represented by the giant elephant bird. Finally, we predicted that the upper limit of body mass for contact incubation was 2000 kg.

Highlights

  • IntroductionBirds have arguably been very successful in evolution [1]

  • Contact-incubate their eggs, and the shell thickness, C number, and F.S. lie on the trend two different reproduction strategies have been adopted by giant birds—one is reversed sexual size dimorphism (RSSD) and lines

  • Extensive research on allometry related to avian reproduction has been performed, our research provides mechanical analyses on eggshells of both extant and extinct ratites and galloanseres

Read more

Summary

Introduction

Birds have arguably been very successful in evolution [1]. In addition to the extraordinary capability of flying, they have a special and efficient way of reproduction [2]. Most birds adopt bird-egg contact incubation and “egg turning” to maintain an adequate environment for embryonic development [2]. During such a process, eggs are subjected to the weight of the incubating bird and possible impact between eggs. An eggshell has to be robust enough to withstand the weight of its parent bird during incubation while breakable for the chick to emerge; these, apparently, contradictory

Objectives
Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.