Abstract

A Zero-knowledge protocol provides provably secure entity authentication based on a hard computational problem. Among many schemes proposed since 1984, the most practical rely on factoring and discrete log, but still they are practical schemes based on NP-hard problems. Among them, the problem SD of decoding linear codes is in spite of some 30y ears of research effort, still exponential. We study a more general problem called MinRank that generalizes SD and contains also other well known hard problems. MinRank is also used in cryptanalysis of several public key cryptosystems such as birational schemes (Crypto'93), HFE (Crypto'99), GPT cryptosystem (Eurocrypt'91), TTM (Asiacrypt'2000) and Chen's authentication scheme (1996). We propose a new Zero-knowledge scheme based on MinRank. We prove it to be Zero-knowledge by black-box simulation. An adversary able to fraud for a given MinRank instance is either able to solve it, or is able to compute a collision on a given hash function. MinRank is one of the most efficient schemes based on NP-complete problems. It can be used to prove in Zero-knowledge a solution to any problem described by multivariate equations. We also present a version with a public key shared by a few users, that allows anonymous group signatures (a.k.a. ring signatures).

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.