Abstract

Economic transformation of lignocellulose hydrolysate into valued-added products is of particular importance for energy and environmental issues. In this study, xylose reductase and glucose dehydrogenase were cloned into plasmid pETDuet-1 and then simultaneously expressed in Escherichia coli BL21(DE3), which was used as whole-cell catalyst for the first time to convert xylose into xylitol coupled with gluconate production. When tested with reconstituted xylose and glucose solution, 0.1 g/mL cells could convert 1 M xylose and 1 M glucose completely and produced 145.81 g/L xylitol with a yield of 0.97 (g/g) and 184.85 g/L gluconic acid with a yield of 1.03 (g/g) in 24 h. Subsequently, the engineered cells were applied in real cornstalk hydrolysate, which generated 30.88 g/L xylitol and 50.89 g/L gluconic acid. The cells were used without penetration treatment, and CaCO3 was used to effectively regulate the pH during the production, which further saved costs.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.