Abstract

SrSn(OH)6 (SSOH) possesses a high oxidation potential in the valence band (VB), which is suitable for photocatalytic oxidation removal of pollutants. However, the electrons in the VB of these catalysts are difficult to transition to the conduction band (CB) under visible light, which makes it difficult to utilize sunlight effectively. In this work, Ag/Ag2O is loaded on the surface of SSOH nanowires, which stimulates the interfacial charge-transfer transition on SSOH. Compared with pure-phase SSOH, the NO abatement ratio of Ag/Ag2O-SSOH under visible light irradiation is increased to 45.10%. The e− in the VB of Ag2O are excited into the CB under visible light, and are further transferred to the Ag to react with O2 to produce superoxide radicals. The photo-excited e− in the VB of SSOH enter into the VB of Ag2O through interfacial charge-transfer transition to recombine with the photo-generated holes in the VB of Ag2O, thereby leaving photo-generated holes in the VB of SSOH. The holes in the VB of SSOH have sufficient oxidizing ability to oxidize the adsorbed hydroxyl groups into hydroxyl radicals. This work provides a new perspective for photocatalytic removal of pollutants by wide band gap photocatalyst under visible light.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.