Abstract

AbstractSolar‐driven methanation represents a potentially cost‐efficient and environmentally friendly route for the direct hydrogenation of CO2. Recently, photothermal catalysis, which involves the combination of both photochemical and thermochemical pathways, has emerged as a promising strategy for the production of solar fuels. For a photothermal catalyst to efficiently convert CO2 under illumination, in the absence of external heating, effective light harvesting, an excellent photothermal conversion and efficient active sites are required. Here, a new composite catalyst consisting of Ni nanoparticles supported on barium titanate that, under optimal reaction conditions, is able to hydrogenate CO2 to CH4 at nearly 100% selectivity with production rates as high as 103.7 mmol g–1 h–1 under both UV–visible and visible irradiation (production rate: 40.3 mmol g−1 h–1) is reported. Mechanistic studies suggest that reaction mostly proceeds through a nonthermal hot‐electron‐driven pathway, with a smaller thermal contribution.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.