Abstract

Vertical-emitting optical couplers that convert in-plane guided light to out-of-plane emission are crucial elements for future photonic integrated circuits. However, traditional vertical-coupling elements, such as grating couplers, by default radiate light in both upward and downward directions, leading to a significant reduction of device efficiency. In this paper, we propose to solve this problem using a novel nanopatch antenna array, inspired by patch antenna theories commonly deployed in microwave circuits. The proposed nanopatch array features an up-to-down emission directionality up to 12.91 dBc and a wide operating bandwidth of over 400 nm simultaneously. Compared with a typical waveguide grating antenna, our design shows a significantly higher free-space gain of 24.27 dBi. The unidirectional, efficient, and broadband antenna arrays presented here are promising for a range of integrated photonics applications, including inter-chip photonic interconnects, light ranging and detection, optical communications, and biological imaging.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.