Abstract

An efficient method for the synthesis of polysubstituted pyrroles was established based on the [3+2] cycloaddition strategy utilizing the [1,2]-phospha-Brook rearrangement under Brønsted base catalysis. The less-explored approach of the [3+2] cycloaddition, that is, the reaction of a C3 subunit with imines, was successfully achieved by making use of newly designed C3 subunits containing the requisite umpolung. The two-step formal [3+2] cycloaddition involves the catalytic generation of an α-oxygenated propargyl anion through the [1,2]-phospha-Brook rearrangement followed by γ-addition to the imine under Brønsted base catalysis and the subsequent intramolecular cyclization mediated by Au catalyst or a halogenation reagent to afford polysubstituted pyrroles having a variety of substituents in a positional selective manner. The pyrroles thus synthesized were amenable to further transformations, such as palladium-catalyzed cross-coupling reactions. The operationally very simple method with readily available substrates provides new access to a diverse array of well-organized polysubstituted pyrroles.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.