Abstract

Two series of novel (symmetrical and unsymmetrical) quinazolinylphenyl-1,3,4-oxadiazole derivatives were synthesized using palladium-catalyzed Suzuki cross-coupling reactions. The presented synthetic methodology is based on the use of bromine-substituted 2-phenyl-4-N,N-dimethylaminoquinazolines and either a boronic acid pinacol ester or a diboronic acid bis(pinacol) ester of 2,5-diphenyl-1,3,4-oxadiazole. The reactions are conducted in a two-phase solvent system in the presence of catalytic amounts of [1,1′-bis(diphenylphosphino)ferrocene]-dichloropalladium(II), sodium carbonate, and tetrabutylammonium bromide, which plays the role of a phase-transfer catalyst. The luminescence properties of the obtained compounds are discussed in the context of applying these compounds in optoelectronics. Specifically, two highly-conjugated final products: N,N-dimethyl-2-phenyl-6-(4-(5-phenyl-1,3,4-oxadiazol-2-yl)phenyl)quinazolin-4-amine (8f) and 6,6′-(4,4′-(1,3,4-oxadiazole-2,5-diyl)bis(4,1-phenylene))bis(N,N-dimethylquinazolin-4-amine (9f), which contain a 1,3,4-oxadiazole moiety connected to a quinazoline ring by a 1,4-phenylene linker at the 6 position, exhibit strong fluorescence emission and high quantum yields.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.