Abstract

Advancements in the metal oxides‐based electrode material for the fabrication of supercapacitors have been an important focus of research in recent times. The electrochemical properties of electrode materials play a vital role in the excellent performance of the supercapacitor. In this regard, the doping of Co3O4 nanoparticles (NPs) with PdO/Pd using the ecofriendly extracted foliar reducing and stabilizing agent from Euphorbia cognata is analyzed. The as‐synthesized Co3O4:PdO/Pd nanocomposite exhibits a multifaceted phase composition, characterized by a particle size of 22 nm and a bandgap energy of 2.28 eV. Remarkably, an obvious reduction in bandgap energy is observed, indicative of the heightened electrochemical performance of the Co3O4:PdO/Pd nanocomposite. Galvanostatic charge–discharge techniques elucidate impressive electrochemical properties, including a 202 F g−1 specific capacitance and an exceptionally small resistance value of 1.04 Ω. These findings not only infer efficient charge particle diffusion, but also signify an enhanced charge storage capacity. Thus, the outcomes of this study state the potential of functionalized foliar Co3O4:PdO/Pd nanocomposites as a promising choice for advanced electrode materials in supercapacitor applications. Importantly, this study highlights the significance of utilizing cost‐effective and sustainable materials in the development of pioneering energy storage materials, contributing the advancement of materials field.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.