Abstract

AbstractBroadband near‐infrared (NIR) phosphor‐converted light‐emitting diodes (pc‐LEDs) are recently regarded as the next‐generation smart light sources for miniaturized optical applications. However, their way to practical applications is largely obstructed by the lack of efficient NIR phosphors with photoluminescence (PL) spectrum covering the whole range of 700–1100 nm. Here, an ultra‐broadband NIR phosphor is designed by rationally constructing a Cr3+ → Yb3+ energy transfer system in a garnet crystal Lu2CaMg2Ge3O12 (LCMG). The disordering of the neighboring cations of LCMG is exploited for removing the inversion symmetry of octahedrally coordinated Cr3+ to promote its parity‐forbidden d–d transition probability; meanwhile, efficient Cr3+Yb3+ energy transfer is leveraged not only to enrich the short‐wave NIR PL in 950–1100 nm, but also to greatly improve the internal quantum efficiency (QE) (from 57.8% to 84.2%) as well as thermal stability. The resulting high external QE (35.6%) enables the demonstration of ultra‐broadband NIR pc‐LED with a record NIR output power of 93.2 mW (350 mA), which promises better performance of pc‐LEDs in non‐visible optical applications. This work provides a possible paradigm for developing ultra‐broadband NIR phosphors activated by transition metal ions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.