Abstract

The nonhistone chromosomal protein high-mobility group 1 protein (HMG-1/HMGB1) can serve as an activator of p53 sequence-specific DNA binding (L. Jayaraman, N. C. Moorthy, K. G. Murthy, J. L. Manley, M. Bustin, and C. Prives, Genes Dev. 12:462-472, 1998). HMGB1 is capable of interacting with DNA in a non-sequence-specific manner and causes a significant bend in the DNA helix. Since p53 requires a significant bend in the target site, we examined whether DNA bending by HMGB1 may be involved in its enhancement of p53 sequence-specific binding. Accordingly, a 66-bp oligonucleonucleotide containing a p53 binding site was locked in a bent conformation by ligating its ends to form a microcircle. Indeed, p53 had a dramatically greater affinity for the microcircle than for the linear 66-bp DNA. Moreover, HMGB1 augmented binding to the linear DNA but not to the microcircle, suggesting that HMGB1 works by providing prebent DNA to p53. p53 contains a central core sequence-specific DNA binding region and a C-terminal region that recognizes various forms of DNA non-sequence specifically. The p53 C terminus has also been shown to serve as an autoinhibitor of core-DNA interactions. Remarkably, although the p53 C terminus inhibited p53 binding to the linear DNA, it was required for the increased affinity of p53 for the microcircle. Thus, depending on the DNA structure, the p53 C terminus can serve as a negative or a positive regulator of p53 binding to the same sequence and length of DNA. We propose that both DNA binding domains of p53 cooperate to recognize sequence and structure in genomic DNA and that HMGB1 can help to provide the optimal DNA structure for p53.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.