Abstract

Code generation methods for digital signal processors are increasingly hampered by the combination of tight timing constraints imposed by the algorithms and the limited capacity of the available register files. Traditional methods that schedule spill code to satisfy storage capacity have difficulty satisfying the timing constraints. The method presented in this paper analyses the combination of limited register file capacity, resource- and timing constraints during scheduling. Value lifetimes are serialized until all capacity constraints are guaranteed to be satisfied after scheduling. Experiments in the FACTS environment show that we efficiently obtain high quality instruction schedules for inner-most loops of DSP algorithms.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.