Abstract
In this study, we fabricated a porous calcium alginate/graphene oxide composite aerogel by using polystyrene colloidal particles as sacrificial template and graphene oxide as a reinforcing filler. Owing to the excellent metal chelation ability of calcium alginate and controlled nanosized pore structure, the as-prepared calcium alginate/graphene oxide composite aerogel (mp-CA/GO) can reach the adsorption equilibrium in 40 min, and the maximum adsorption capacity for Pb2+, Cu2+ and Cd2+ is 368.2, 98.1 and 183.6 mg/g, respectively. This is higher than most of the reported heavy metal ion sorbents. Moreover, the mp-CA/GO can be regenerated through simple acid-washing and be used repeatedly with little loss in performance. The adsorption mechanism analysis indicates that the mp-CA/GO adsorb the heavy metal ions mainly through the ion exchange and chemical coordination effects.
Highlights
Heavy metal pollution is currently a serious environmental problem
The results showed that calcium alginate could efficient removal of Pb2+ and Cu2+ from wastewater due to its rich carboxyl (−COOH) and hydroxyl
The final mp-CA/Graphene oxide (GO) composite aerogel were obtained by removing the PS colloidal particles with toluene and tetrahydrofuran exposure through ultrasonication [16]
Summary
Heavy metal pollution is currently a serious environmental problem. Heavy metal ions are not biodegradable and tend to accumulate in living organisms, thereby causing many serious health and environment problems [1,2]. Many methods such as ion-exchange, chemical oxidation and reduction, membrane filtration, chemical precipitation, and adsorption have been employed for removing heavy metal ions from water media [3,4,5,6,7]. Among these treatment methods, adsorption attracts more attention due to its simple operation, low price, recyclability of the adsorbent, and high efficiency in treating low-concentration wastewater [8]. Adsorption capacity, kinetics and thermodynamics properties, adsorption mechanism, and reutilization were explored
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.