Abstract

This paper demonstrates functionalization of a new hybrid nanoclay for effective adsorption of chromium(VI) ions from wastewater. Halloysite nanotubes (HNTs) were functionalized by poly(amidoamine) dendritic polymers (HNTs-(DEN-NH2)) via a convergent synthetic route by carboxylic acid as a linkage. Various characterization methods confirm that poly(amidoamine) dendritic groups were effectively grafted onto the surface of HNTs that found a high specific surface area of 75 m2/g, as measured by micrometric BET analyzer. Moreover, the adsorption activity of HNTs-(DEN-NH2) for Cr(VI) was systematically investigated using a batch solution that reveals the removal efficiency of 98% for HNTs-(DEN-NH2) comparing to 23% for pristine HNTs, at optimum conditions. The enhancement of Cr(VI) removal for HNTs-(DEN-NH2) comparing to HNTs was mainly ascribed to be due to the electrostatic interaction, that was confirmed by the results of Fourier transform infrared (FTIR) and X-ray photoelectron spectroscopy (XPS). Moreover, regeneration studies display that HNTs-(DEN-NH2) can maintain removal Cr(VI) with high efficiency after four consecutive cycles.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.