Abstract

In this work, an innovative electrochemically assisted Fe(III)-nitrilotriacetic acid system for the activation of peroxydisulfate (electro/Fe(III)-NTA/PDS) was proposed for the removal of bisphenol A (BPA) at neutral pH with commercial graphite electrodes. The efficient BPA decay was mainly originated from the continuous activation of PDS by Fe(II) reduced from Fe(III)-NTA complexes at the cathode. Scavenger experiments and electron paramagnetic resonance (EPR) measurements confirmed that the removal of BPA occurred through graphite adsorption, direct electron transfer (DET) and radical oxidation. Sulfate and hydroxyl radicals were primarily responsible for the oxidation of BPA while graphite adsorption and DET played a minor role in BPA removal. The influence of Fe(III) concentration, PDS dosage, input current, NTA to Fe(III) molar ratio as well as coexisting inorganic anions (Cl−, NO3−, H2PO4− and HCO3−) on BPA elimination was explored. The BPA removal efficiency reached 93.5 % after 60 min reaction in the electro/Fe(III)-NTA/PDS system under the conditions of initial pH 7.0, 0.30 mM Fe(III), 0.15 mM NTA, 5 mM PDS and 5 mA constant current. Overall, this research provided a novel perspective and potential for remediation of organic wastewater using NTA in combination with electrochemistry in the homogeneous Fe(III)/persulfate system.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.