Abstract
Chromium-containing wastewater causes serious environmental pollution due to the harmfulness of Cr(VI). The ferrite process is typically used to treat chromium-containing wastewater and recycle the valuable chromium metal. However, the current ferrite process is unable to fully transform Cr(VI) into chromium ferrite under mild reaction conditions. This paper proposes a novel ferrite process to treat chromium-containing wastewater and recover valuable chromium metal. The process combines FeSO4 reduction and hydrothermal treatment to remove Cr(VI) and form chromium ferrite composites. The Cr(VI) concentration in the wastewater was reduced from 1040 mg L−1 to 0.035 mg L−1, and the Cr(VI) leaching toxicity of the precipitate was 0.21 mg L−1 under optimal hydrothermal conditions. The precipitate consisted of micron-sized ferrochromium spinel multiphase with polyhedral structure. The mechanism of Cr(VI) removal involved three steps: 1) partial oxidation of FeSO4 to Fe(III) hydroxide and oxy-hydroxide; 2) reduction of Cr(VI) by FeSO4 to Cr(III) and Fe(III) precipitates; 3) transformation and growth of the precipitates into chromium ferrite composites. This process meets the release standards of industrial wastewater and hazardous waste and can improve the efficiency of the ferrite process for toxic heavy metal removal.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.