Abstract
Transintestinal cholesterol excretion (TICE) is a major route for eliminating cholesterol from the body and a potential therapeutic target for hypercholesterolemia. The underlying mechanism, however, is largely unclear, and its contribution to cholesterol disposal from the body is obscured by the counteracting process of intestinal cholesterol reabsorption. To determine the quantity of TICE independent from its reabsorption, we studied two models of decreased intestinal cholesterol absorption. Cholesterol absorption was inhibited either by ezetimibe or, indirectly, by the genetic inactivation of the intestinal apical sodium-dependent bile acid transporter (ASBT; SLC10A2). Both ezetimibe treatment and Asbt inactivation virtually abrogated fractional cholesterol absorption (from 46% to 4% and 6%, respectively). In both models, fecal neutral sterol excretion and net intestinal cholesterol balance were considerably higher than in control mice (5- and 7-fold, respectively), suggesting that, under physiological conditions, TICE is largely reabsorbed. In addition, the net intestinal cholesterol balance was increased to a similar extent but was not further increased when the models were combined, suggesting that the effect on cholesterol reabsorption was already maximal under either condition alone. On the basis of these findings, we hypothesize that the inhibition of cholesterol (re)absorption combined with stimulating TICE will be most effective in increasing cholesterol disposal.
Highlights
Transintestinal cholesterol excretion (TICE) is a major route for eliminating cholesterol from the body and a potential therapeutic target for hypercholesterolemia
The estimated net intestinal cholesterol balance thereby largely exceeds the biliary and dietary influx of cholesterol into the intestine. These data indicate that the profound increase in fecal neutral sterol (NS) is for the most part due to TICE, which is not reabsorbed upon ezetimibe treatment
Using two mechanistically different models of impaired cholesterol absorption, we demonstrate that the net intestinal cholesterol balance is increased
Summary
Transintestinal cholesterol excretion (TICE) is a major route for eliminating cholesterol from the body and a potential therapeutic target for hypercholesterolemia. To determine the quantity of TICE independent from its reabsorption, we studied two models of decreased intestinal cholesterol absorption. Cholesterol absorption was inhibited either by ezetimibe or, indirectly, by the genetic inactivation of the intestinal apical sodiumdependent bile acid transporter (ASBT; SLC10A2). Both ezetimibe treatment and Asbt inactivation virtually abrogated fractional cholesterol absorption (from 46% to 4% and 6%, respectively). In both models, fecal neutral sterol excretion and net intestinal cholesterol balance were considerably higher than in control mice (5- and 7-fold, respectively), suggesting that, under physiological conditions, TICE is largely reabsorbed.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.