Abstract
Classifying the task of automatically assigning unlabeled questions into predefined categories (or topics) and effectively retrieving a similar question are crucial aspects of an effective cQA service. We first address the problems associated with estimating and utilizing the distribution of words in each category of word weights. We then apply an automatic expansion word generation technique that is based on our proposed weighting method and the pseudo relevance feedback to question classification. Secondly to address the lexical gap problem in question retrieval, the case frame of the sentence is first defined using the extracted components of a sentence, and a similarity measure based on the case frame and the word embedding is then derived to determine the similarities between two sentences. These similarities are then used to reorder the results of the first retrieval model. Consequently, the proposed methods significantly improve the performance of question classification and retrieval.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.