Abstract

Utilization of triplet excitons plays a key role in obtaining highly efficient quantum-dot light-emitting diodes (QD-LEDs). However, to date, only phosphorescent materials have been implemented to harvest triplet excitons in QD-LEDs. In this work, we introduced a thermally activated delayed fluorescence (TADF) emitter, 4,5-di(9H-carbazol-9-yl)phthalonitrile (2CzPN), doped into poly(N-vinylcarbazole) (PVK) as an exciton harvester in red QD-LEDs by solution processing. As a result, electrons leaking to the PVK layer will be trapped by 2CzPN to form long-lifetime TADF excitons in the 2CzPN:PVK layer, and then this harvested exciton energy can be effectively transferred to the adjacent QDs by the Förster resonance energy-transfer process. The fabricated red CdSe/CdS core/shell QD-LEDs show a maximum luminescence efficiency of 17.33 cd/A and longer lifetime. Our results demonstrate that the TADF sensitizer would be a promising candidate to develop highly efficient QD-LEDs.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.