Abstract

With the fast development in Cloud storage technologies and ever increasing use of Cloud data centres, data privacy and confidentiality has become a must. Indeed, Cloud data centres store each time more sensitive data such as personal data, organizational and enterprise data, transactional data, etc. However, achieving confidentiality with flexible searchable capability is a challenging issue. In this article, we show how to construct an efficient predicate encryption with fine-grained searchable capability. Predicate Encryption (PE) can achieve more sophisticated and flexible functionality compared with traditional public key encryption. We propose an efficient predicate encryption scheme by utilizing the dual system encryption technique, which can also be proved to be IND-AH-CPA (indistinguishable under chosen plain-text attack for attribute-hiding) secure without random oracle. We also carefully analyse the relationship between predicate encryption and searchable encryption. To that end, we introduce a new notion of Public-Key Encryption with Fine-grained Keyword Search (PEFKS). Our results show that an IND-AH-CPA secure PE scheme can be used to construct an IND-PEFKS-CPA (indistinguishable under chosen plain-text attack for public-key encryption with fine-grained keyword search) secure PEFKS scheme. A new transformation of PE-to-PEFKS is also proposed and used to construct an efficient PEFKS scheme based on the transformation from the proposed PE scheme. Finally, we design a new framework for supporting privacy preserving predicate encryption with fine-grained searchable capability for Cloud storage. Compared to most prominent frameworks, our framework satisfies more features altogether and can serve as a basis for developing such frameworks for Cloud data centres.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.