Abstract

Colloidally stable polystyrene/silica nanocomposite particles of around 200-400 nm diameter and containing 22-28 wt % silica can be readily prepared by aqueous emulsion polymerization at 60 degrees C using a cationic azo initiator in combination with a commercially available glycerol-functionalized ultrafine aqueous silica sol in the absence of any surfactant, auxiliary comonomer, or nonaqueous cosolvent. Optimization of the initial silica sol concentration allows relatively high silica aggregation efficiencies (up to 95%) to be achieved. Control experiments confirm the importance of selecting a cationic initiator, since nanocomposite particles were not formed when using an anionic persulfate initiator. Similarly, the glycerol groups on the silica sol surface were also shown to be essential for successful nanocomposite particle formation: use of an unfunctionalized ultrafine silica sol in control experiments invariably led to polystyrene latex coexisting with the silica nanoparticles, rather than efficient nanocomposite formation. Electron spectroscopy imaging transmission electron microscopy studies of ultramicrotomed polystyrene/silica nanocomposite particles indicate well-defined "core-shell" particle morphologies, which is consistent with both X-ray photoelectron spectroscopy and aqueous electrophoresis studies.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.