Abstract

Fabrication of economic and high-performance electrodes for electrocatalytic oxygen evolution reaction (OER) accounts for a crucial issue associated with developing powerful and practical water splitting systems. In this work, free-standing Ni/Ni-M (M = Fe, Co, Mo) bimetallic oxides core/shell nanorod arrays (Ni/Ni-M NRAs) were prepared through electroless deposition of transition metal species on black nickel sheet (nickel nanorod arrays (Ni NRAs)) followed by electrochemical oxidation. All three types of Ni/Ni-M NRAs demonstrated enhanced electrocatalytic activity toward oxygen evolution reactions (OER). Especially, Ni/Ni-Fe NRAs electrode exhibit small onset potential of 1.535 V at current density of 10 mA∙cm−2. In contrast, the OER durability of these three samples was distinct. At 500 mV constant overpotential, the current density loss in OER of Ni/Ni-Fe NRAs was merely 13.5% for a period of 20000 s; but Ni/Ni-Mo and Ni/Ni-Co NRAs had almost disappeared catalytic activity under the identical conditions. According to many reports, the results were different for the superior OER stability of Ni-based bimetallic catalysts. Electrochemical analysis revealed that the NRAs structure dramatically improves charge transfer efficiency and electrochemically active surface area (ECSA). The present study might provide a new insight to design and fabricate more practical and high-performance Ni-based electrodes for OER.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.