Abstract

Human pluripotent stem cells (hPSCs) hold great promise for applications in regenerative medicine and pharmaceutical development. Such applications require cell culture methods and reagents that are chemically defined, xeno-free, scalable, and low-cost. Herein, we describe non-mechanical passaging of hPSCs on spider silk films under chemically defined and xeno-free conditions. The cells were dissociated into single cells or small aggregates using Accutase or enzyme-free dissociation buffer and then passaged to spider silk films, where they expanded in monolayers until they covered the surface. Cells cultured over 10 passages on spider silk film remained karyotypically normal and pluripotent. In conclusion, a novel method for passaging dissociated hPSCs under conditions that are compatible with clinical applications is presented. The method is cost-efficient and may be useful for both research and clinical applications.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.