Abstract

The development of complex biological sample-compatible fluorescent molecularly imprinted polymers (MIPs) with improved performances is highly important for their real-world bioanalytical and biomedical applications. Herein, we report on the first hydrophilic "turn-on"-type fluorescent hollow MIP microparticles capable of directly, highly selectively, and rapidly optosensing hippuric acid (HA) in the undiluted human urine samples. These fluorescent hollow MIP microparticles were readily obtained through first the synthesis of core-shell-corona-structured nitrobenzoxadiazole (NBD)-labeled hydrophilic fluorescent MIP microspheres by performing one-pot surface-initiated atom transfer radical polymerization on the preformed "living" silica particles and subsequent removal of their silica core via hydrofluoric acid etching. They showed "turn-on" fluorescence and high optosensing selectivity and sensitivity toward HA in the artificial urine (the limit of detection = 0.097 μM) as well as outstanding photostability and reusability. Particularly, they exhibited much more stable aqueous dispersion ability, significantly faster optosensing kinetics, and higher optosensing sensitivity than their solid counterparts. They were also directly used for quantifying HA in the undiluted human urine with good recoveries (96.0%-102.0%) and high accuracy (RSD ≤ 4.0%), even in the presence of several analogues of HA. Such fluorescent hollow MIP microparticles hold much promise for rapid and accurate HA detection in the clinical diagnostic field.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.