Abstract
Incorporating demand-side management (DSM) into residential energy guarantees dynamic electricity management in the residential domain by allowing consumers to make early-informed decisions about their energy consumption. As a result, power companies can reduce peak demanded power and adjust load patterns rather than having to build new production and transmission units. Consequently, reliability is enhanced, net operating costs are reduced, and carbon emissions are mitigated. DSM can be enhanced by incorporating a variety of optimization techniques to handle large-scale appliances with a wide range of power ratings. In this study, recent efficient algorithms such as the binary orientation search algorithm (BOSA), cockroach swarm optimization (CSO), and the sparrow search algorithm (SSA) were applied to DSM methodology for a residential community with a primary focus on decreasing peak energy consumption. Algorithm-based optimal DSM will ultimately increase the efficiency of the smart grid while simultaneously lowering the cost of electricity consumption. The proposed DSM methodology makes use of a load-shifting technique in this regard. In the proposed system, on-site renewable energy resources are used to avoid peaking of power plants and reduce electricity costs. The energy Internet-based ThingSpeak platform is adopted for real-time monitoring of overall energy expenditure and peak consumption. Peak demand, electricity cost, computation time, and robustness tests are compared to the genetic algorithm (GA). According to simulation results, the algorithms produce extremely similar results, but BOSA has a lower standard deviation (0.8) compared to the other algorithms (1.7 for SSA and 1.3 for CSOA), making it more robust and superior, in addition to minimizing cost (5438.98 cents of USD (mean value) and 16.3% savings).
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.