Abstract

Corneal neovascularization (CoNV)-induced blindness is an enduring and challenging condition with limited management options. Small interfering RNA (siRNA) is a promising strategy for preventing CoNV. This study reported a new strategy using siVEGFA to silence vascular endothelial growth factor A (VEGFA) for CoNV treatment. To improve the efficacy of siVEGFA delivery, a pH-sensitive polycationic mPEG2k-PAMA30-P(DEA29-D5A29) (TPPA) was fabricated. TPPA/siVEGFA polyplexes enter cells via clathrin-mediated endocytosis, resulting in higher cellular uptake efficiency and comparable silencing efficiency than that of Lipofectamine 2000 in vitro. Hemolytic assays verified that TPPA safe in normal physiological environments (pH 7.4) but can easily destroy membranes in acidic mature endosomes (pH 4.0). Studies on the distribution of TPPA in vivo showed that it could prolong the retention time of siVEGFA and promote its penetration in the cornea. In a mouse model induced by alkali burn, TPPA efficiently delivered siVEGFA to the lesion site and achieved VEGFA silencing efficiency. Importantly, the inhibitory effect of TPPA/siVEGFA on CoNV was comparable to that of the anti-VEGF drug ranibizumab. Delivering siRNA using pH-sensitive polycations to the ocular environment provides a new strategy to efficiently inhibit CoNV.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.