Abstract
Nonlinear optical spectroscopies are powerful tools for probing quantum dynamics in molecular and nanoscale systems. While intuition about ultrafast spectroscopies is often built by considering impulsive optical pulses, actual experiments have finite-duration pulses, which can be important for interpreting and predicting experimental results. We present a new freely available open source method for spectroscopic modeling, called Ultrafast Ultrafast (UF2) spectroscopy, which enables computationally efficient and convenient prediction of nonlinear spectra, such as treatment of arbitrary finite duration pulse shapes. UF2 is a Fourier-based method that requires diagonalization of the Liouvillian propagator of the system density matrix. We also present a Runge-Kutta-Euler (RKE) direct propagation method. We include open system dynamics in the secular Redfield, full Redfield, and Lindblad formalisms with Markovian baths. For non-Markovian systems, the degrees of freedom corresponding to memory effects are brought into the system and treated nonperturbatively. We analyze the computational complexity of the algorithms and demonstrate numerically that, including the cost of diagonalizing the propagator, UF2 is 20-200 times faster than the direct propagation method for secular Redfield models with arbitrary Hilbert space dimension; it is similarly faster for full Redfield models at least up to system dimensions where the propagator requires more than 20 GB to store; and for Lindblad models, it is faster up to Hilbert space dimension near 100 with speedups for small systems by factors of over 500. UF2 and RKE are part of a larger open source Ultrafast Software Suite, which includes tools for automatic generation and calculation of Feynman diagrams.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.