Abstract
Filter-less, wavelength-selective photodetectors made of perovskite usually rely on the charge collection narrowing mechanism, which intrinsically limits the response times. Using the narrow excitonic peak of, e.g., two-dimensional (2D) Ruddlesden-Popper perovskites as direct absorbers to realize color-selective photodetectivity promises faster responses. However, one major challenge in realizing such devices remains the separation and charge carrier extraction of the tightly bound excitons. Here, we report on filter-less color-selective photoconductivity in 2D perovskite butylammonium lead iodide thin film devices, exhibiting a distinct resonance in the photocurrent spectrum with a full width at half-maximum of 16.5 nm that correlates to the excitonic absorption. Our devices exhibit unexpectedly efficient charge carrier separation with an external quantum efficiency of ≤8.9% at the excitonic resonance, which we trace back to the involvement of exciton polarons. Our photodetector achieves response times of 150 μs and a maximum specific detectivity of 2.5 × 1010 Jones at the excitonic peak.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.